A. V. KISELEV

Problem 1 (10%). The discrete metric d_0 attains exactly two different real values. Does there exist a metric function $\varrho: \mathfrak{X} \times \mathfrak{X} \rightarrow \mathbb{R}$ which attains exactly 2020 different real values?

Either prove the non-existence or give an explicit example (\mathcal{X}, ϱ) .

Problem 2 (15%). Are the metric topologies induced on the plane \mathbb{R}^2 by the metrics d_1 and d_{∞} equivalent or not? (If yes, prove it; or give an example: $U \subseteq \mathbb{R}^2 \mid U \in \mathcal{T}_1$ but $U \notin \mathcal{T}_{\infty}$, or *vice versa*.)

Problem 3 (15%). Are the subsets $[0, 1) \times [0, 1)$ and $[0, 1] \times [0, 1)$ of Euclidean plane \mathbb{E}^2 homeomorphic or not? (Either prove the impossibility of any ~ or describe one ~ explicitly.)

Problem 4 (10+10%). Find out whether in metric spaces $(\mathfrak{X}, d_{\mathfrak{X}})$, each "closed disk" $B_{\overline{q}}^{d_{\mathfrak{X}}}(x_0) = \{x \in \mathfrak{X} \mid d_{\mathfrak{X}}(x, x_0) \leq q\}$ is closed.

• Does each closed disk always coincide with the closure $\overline{B_q^{d_{\mathcal{X}}}(x_0)}$ of the open disk of radius *q* centered at $x_0 \in \mathcal{X}$?

In items (*a*), (*b*) either prove "always" or give a counterexample.

Problem 5 (15%). Let \mathcal{X} be a space such that every continuous function $f: \mathcal{X} \to \mathbb{E}^1$ has the property: if u < w < v and f(x) = u, f(y) = v, then there is $z \in \mathcal{X}$ with f(z) = w. Is every such space \mathcal{X} connected or not? (state and prove, e.g., by counterexample)

Problem 6 (15%). Suppose for every $n \in \mathbb{N}$ that V_n is a nonempty closed subset of a sequentially compact space \mathcal{X} and $V_n \supseteq V_{n+1}$. Prove that $\bigcap_{n=1}^{+\infty} V_n \neq \emptyset$.

Problem 7 (10%). Find a solution x(s) of the integral equation,

 $x(s) = \frac{1}{2} \int_0^1 x(t) \, \mathrm{d}t + \exp(s) - \frac{1}{2}(\exp(1) - 1),$

by consecutive approximations starting from $x_0(s) = 0$.

Please verify by direct substitution that it satisfies the equation!

Date: June 29, 2020 (08:30–12:00). Good luck & take care !